
Process Models with Data: 
Soundness Verification and Repair

Faculty of Computer Science ACM Sigmod Moscow
2025

Student:
Nikolai M. Suvorov, 
Research Assistant of PAIS Lab,
HSE University

Scientific Advisor:
Irina A. Lomazova, 

D.Sc., Professor, Head of the PAIS Lab



2

Processes and Process Models

Faculty of Computer Science SoundnessACM SIGMOD

A business process is a distributed process consisting of a set of activities that are 

performed in coordination in an organizational and technical environment and allow 

achieving a business goal.

Analysis of such processes is usually done on their models.

Analysis helps to find process inconsistencies and vulnerabilities and provides information 

that may form a basis for making decisions to improve and optimize processes.

M. Weske, Introduction, Springer Berlin Heidelberg, Berlin, Heidelberg,2012, pp. 3–23.



3

Process Model Soundness

Faculty of Computer Science SoundnessACM SIGMOD

A process model is sound if:

• The process always properly terminates.

• Each process model activity can occur in a process instance.

How to verify soundness of data-aware processes?



4

Loan Application Process

Faculty of Computer Science Modeling Data-Aware ProcessesACM SIGMOD



5

BPMN Extension with conditions on arcs

Faculty of Computer Science Modeling Data-Aware ProcessesACM SIGMOD



6

BPMN with DMN tables

Faculty of Computer Science ACM SIGMOD Modeling Data-Aware Processes



7

Workflow nets

Faculty of Computer Science

A WF-net is a place-transition system (𝑃, 𝑇, 𝐹, 𝑙) with 
distinguished input (𝑖) and output (𝑜) places, where:
• 𝑃 is a set of places,
• 𝑇 is a set of transitions,
• 𝐹 is a flow relation 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 → ℕ,
• 𝑙 is a labeling function 𝑇 → 𝐴,
• Every node from 𝑃 ∪ 𝑇 is on a path from 𝑖 to 𝑜.
• 𝑖 is a single source place, 𝑜 is a single sink place. 

W. M. van der Aalst, “The application of petri nets to workflow management”, J. Circuits Syst. Comput., vol. 8, pp. 21–66, 1998.

ACM SIGMOD Modeling Data-Aware Processes



8

Workflow nets with variables as places

Faculty of Computer Science

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



9

Workflow nets with variables as places

Faculty of Computer Science

Loan Request updates amount,
amount is in range [1, 1 000 000]

Adding 999 999 LR transitions
Adding 1 000 000 places

Approach 1

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



10

Workflow nets with variables as places

Faculty of Computer Science

Loan Request updates amount,
amount is in range [1, 1 000 000]

Adding two places: 
one without tokens,

one with 1 000 000 tokens.
Adding 999 999 transitions.

Approach 2

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



11

Workflow nets with variables as places

Faculty of Computer Science

Loan Request updates amount,
amount is compared with 5000

Adding 2 LR transitions and 3 places
(amount < 5000)
(amount = 5000)
(amount > 5000)

Approach 3

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



12

Workflow nets with variables as places

Faculty of Computer Science

GAI updates age & salary,
CR updates repayment,

age is compared with 55,60,
salary is compared with 15000 & repayment

5 places for age (<55,55,(55,60),60,>60)
19 places for salary & repayment 

(s < 15000 & r undef)
(s < 15000 & r < salary)
(s < 15000 & r = salary)

(s < 15000 & r > s & r < 15000)
(s < 15000 & r > 15000)
(s < 15000 & r = 15000)

…

Approach 3

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



13

Workflow nets with variables as places

Faculty of Computer Science

GAI updates age & salary,
CR updates repayment,

age is compared with 55,60,
salary is compared with 15000 & repayment

Can make write on AndJ.
Add 13x5 AndJ transitions and 18 places.

5 places for age,
13 places for s & r (without undef)

Approach 3

We need to create a number of places to represent variables. 

Three viable approaches:
1. A single place for each possible variable value (only for 

finite domains).
2. Two places for each variable (only for finite domains).
3. A single place for each formula representing possible 

values of variables. Tackle concurrency issues.

After that, add copies of transitions that check or update 
variable values.

ACM SIGMOD Modeling Data-Aware Processes



14

Workflow nets with data

Faculty of Computer Science

WDF-net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑙, 𝑟𝑑,𝑤𝑡, 𝑑𝑒𝑙, 𝑔𝑟𝑑) is a WF-
net that may read, write and delete the data 
elements on transition firings. 
Transitions may have guards that are predicates on 
the data elements and that can block execution.

A state in a WFD-nets includes the marking, the state 
of data elements (def or undef), and the state of 
guards (T,F, or undef).

Modeling Data-Aware Processes

N. Sidorova, C. Stahl, and N. Trčka, “Soundness verification for conceptual workflow nets with data: Early detection of errors with the most precision possible”, Inf. 
Syst., vol. 36, no. 7, pp. 1026–1043, Nov. 2011.

ACM SIGMOD



15

Workflow nets with tables

Faculty of Computer Science

WFT-net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑙, 𝑟𝑑,𝑤𝑡, 𝑑𝑒𝑙, 𝑔𝑟𝑑, 𝑅, 𝑂𝑅) is 
a WFD-net with relational tables. Transitions may 
execute Select, Insert, Update, Delete queries. 
Results of these queries may be used in guards.

A state in a WFT-nets includes the marking, the 
state of data elements (def or undef), the state of 
guards (T,F, or undef), and the state of tables.

Modeling Data-Aware Processes

X. Tao, G. Liu, B. Yang, C. Yan, and C. Jiang, “Workflow nets with tables andtheir soundness”, IEEE Transactions on Industrial Informatics, vol. 16, no. 3,pp. 1503–1515, 2020. 

ACM SIGMOD



16

Data Petri nets

Faculty of Computer Science

DPN 𝑁 = (𝑃, 𝑇, 𝐹, 𝑙, 𝑉, 𝑔𝑢𝑎𝑟𝑑) is a Petri 
net, where:
• V is a finite set of variables,
• guard is a guard labeling function 

𝑇 → Φ(𝑉𝑟 ∪ 𝑉𝑤)

A state in a DPNs includes the marking and 
the current variable values.

M. de Leoni, J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst, “Decomposing alignment-based conformance checking of data-aware process models”, in On the 
Move to Meaningful Internet Systems: OTM 2014 Conferences, R. Meersman, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 3–20. 

Modeling Data-Aware ProcessesACM SIGMOD



17

Model Failure Points

Faculty of Computer Science

Marking:
𝑀 = [𝑝6]

Variable state:
𝛼 𝑎𝑔𝑒 = 50
𝛼 𝑠𝑎𝑙𝑎𝑟𝑦 = 16000
𝛼 𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 1000
𝛼 𝑎𝑚𝑜𝑢𝑛𝑡 = 4500

Modeling Data-Aware ProcessesACM SIGMOD



18

What to Use

WF-nets: small number of variables with small domains (bool, enum, string).

WFD-nets: important existence of resources at the moment of  an activity, very simple guards 
that do not relate on each other.

WFT(C)-nets: same for WFD-nets, where a process operates with data stores.

DPNs: data can be only read and written, comparison operators between constants and 
variables, variables of both finite/infinite domains, variables may be interrelated.

Faculty of Computer Science Modeling Data-Aware ProcessesACM SIGMOD



19

Exploring State Space for Soundness

Faculty of Computer Science

WF-net:
• Coverability graph is finite.
• Reachability graph is finite if the net is bounded.

WFD-net, WFT-net, WFTC-net:
• Boundedness is assumed.
• Reachability graph is finite if the net is bounded.

DPN:
• Coverability graph may be not finite.
• Reachability graph may be not finite even if the net is bounded.

Verifying SoundnessACM SIGMOD



20

DPN State Space Structures

Faculty of Computer Science

Reachability Graph
Abstract Reachability Graph

Verifying SoundnessACM SIGMOD



21

Some properties of ACG/ARG

Faculty of Computer Science

Properties that can be checked on ACG/ARG:
• Boundedness
• Absence of dead transitions
• Reachability of [o] if the net is bounded, reachability of 𝑀 ≥ [𝑜]
• Absence of deadlocks & livelocks on the backbone level (Petri net) if 

the net is bounded.

Properties that cannot be checked on ACG/ARG:
• Absence of deadlocks & livelocks caused by adding the dataflow.
• Reachability of [o] if the net is unbounded.

Verifying SoundnessACM SIGMOD



22

Soundness: Ways To Address

Faculty of Computer Science

1. Split ARG nodes to make them as granular as possible w.r.t. variables 
updated on preceding transition firing -> huge ARG.

2. Construct an ARG for each reachable marking, unite the obtained results -> 
huge number of ARGs.

Verifying Soundness

P. Felli, M. Montali, S. Winkler, Soundness of data-aware processes with arithmetic conditions, Advanced Information Systems Engineering, Springer, 2022, pp. 389–406.
P. Felli, M. de Leoni, M. Montali, Soundness verification of data-aware process models with variable-to-variable conditions, Fundam. Informaticae 182 (1) (2021) 1–29.

ACM SIGMOD



23

Soundness: Ways To Address

Faculty of Computer Science

1. Split ARG nodes to make them as granular as possible w.r.t. variables 
updated on preceding transition firing -> huge ARG.

2. Construct an ARG for each reachable marking, unite the obtained results -> 
huge number of ARGs.

3. Refine DPN, so that an ARG of the refined DPN is sufficient for checking 
deadlocks and livelocks -> slightly bigger ARG, several number of ARGs.

Verifying Soundness

P. Felli, M. Montali, S. Winkler, Soundness of data-aware processes with arithmetic conditions, Advanced Information Systems Engineering, Springer, 2022, pp. 389–406.
P. Felli, M. de Leoni, M. Montali, Soundness verification of data-aware process models with variable-to-variable conditions, Fundam. Informaticae 182 (1) (2021) 1–29.

ACM SIGMOD



24

Deadlocks and DPN Refinement

Faculty of Computer Science

Added two silent transitions with guards 
as negations of input conditions of Reject 
Request and Accept Request.

This allows to detect a deadlock on an 
ARG:
• Now an ARG includes a run with a 

consequent execution of 𝜏𝑅𝑅 and 𝜏𝐴𝑅.
• Conjunction of their guards is a 

condition at which neither 𝑅𝑅 nor 𝐴𝑅
may fire.

• Thus, now an ARG contains a dead 
node which denotes a deadlock.

Verifying SoundnessACM SIGMOD



25

Livelocks and DPN Refinement

Faculty of Computer Science

We may miss livelocks that (in a loop) overwrite 
variables checked in silent transitions.

Before adding silent transitions, we can split 
transitions from ARG loops based on the input 
condition of the transition leading out of a cycle.

If there is a livelock, using this technique, we 
obtain a loop in the ARG, from which neither of 
output transitions may fire.

Source DPN Refined DPN

Tau-Refined DPN

Verifying SoundnessACM SIGMOD



26

Livelocks and DPN Refinement

Faculty of Computer Science

We may miss livelocks that (in a loop) overwrite 
variables checked in silent transitions.

Before adding silent transitions, we can split 
transitions from ARG loops based on the input 
condition of the transition leading out of a cycle.

If there is a livelock, using this technique, we 
obtain a loop in the ARG, from which neither of 
output transitions may fire.

ARG

Verifying SoundnessACM SIGMOD



27

Applicability Borders

Faculty of Computer Science Verifying SoundnessACM SIGMOD



28

Verification Time

Faculty of Computer Science

On the literature examples, nearly 1.5 
times faster than the algorithm based 
on ARG construction for each marking

Verifying SoundnessACM SIGMOD

Intel Core I7-7700HQ



29

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

ACM SIGMOD Repairing Soundness



30

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Adding Priorities to Transitions

ACM SIGMOD Repairing Soundness



31

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Adding Time Restrictions to Transitions

[0,0] [1,1] [0,0] [0,1]

ACM SIGMOD Repairing Soundness



32

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Adding Synthesized Controllers

e

2

ACM SIGMOD Repairing Soundness



33

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Removing PN unfeasible paths

ACM SIGMOD Repairing Soundness



34

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Adding extra transitions

ACM SIGMOD Repairing Soundness



35

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

Removing extra arcs

ACM SIGMOD Repairing Soundness



36

Soundness Repair Approaches

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

I

II

III

ACM SIGMOD Repairing Soundness



37

Soundness Repair of DPNs

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

ACM SIGMOD Repairing Soundness



38

Soundness Repair of DPNs

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

ACM SIGMOD Repairing Soundness



39

Soundness Repair of DPNs

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model perturbations 
w.r.t. costs of actions.

ACM SIGMOD Repairing Soundness



40

Soundness Repair of DPNs

Faculty of Computer Science

1. Restrict the allowed behavior.

2. Allow new behavior that previously led to failure points.

3. Use heuristics algorithms making small model 
perturbations w.r.t. costs of actions.

I

II

III (𝒔𝒂𝒍𝒂𝒓𝒚𝒓 ≥ 𝟏𝟎𝟎𝟎)

ACM SIGMOD Repairing Soundness



41

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Should the behavior not allowed in the model be 
allowed in the repaired model?



42

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Should the behavior not allowed in the model be 
allowed in the repaired model?
Probably, no.



43

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Should soundness of the backbone be assumed?



44

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Should soundness of the backbone be assumed?
Probably, no.

Sound DPN with an unsound backbone



45

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Can we propose a repair algorithm that is applicable in 
the general case and that always succeeds in repairing 
a model by restricting transition constraints?



46

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Can we propose a repair algorithm that is applicable in 
the general case and that always succeeds in repairing 
a model by restricting transition constraints?
No.

Irreparable DPN with a sound backbone

Irreparable DPN with an unsound backbone



47

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Can we propose a repair algorithm that if repairs, saves 
all the correct behavior of the source net in the resulting 
net obtained by restricting transition constraints?



48

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

Can we propose a repair algorithm that if repairs, saves 
all the correct behavior of the source net in the resulting 
net obtained by restricting transition constraints?
No.

DPN for which it is impossible to save all the correct behavior
after the repair using transition constraints restriction



49

Soundness Repair of DPNs

Faculty of Computer Science ACM SIGMOD Repairing Soundness

But a semi-decision procedure for repairing DPNs could be developed



50

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



51

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



52

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



53

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness

Cut off branches with red nodes 
by restricting the transition 
constraints



54

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



55

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



56

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness

Source DPN Refined DPN

Tau-Refined DPN



57

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness



58

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness

Cut off branches with red nodes 
by restricting the transition 
constraints



59

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness

Lastly merge all the refined 
transitions back



60

Repair Approach

Faculty of Computer Science

1. Make a model bounded.

2. Eliminate deadlocks and livelocks.

3. Eliminate dead transitions and isolated places.

MADS Verifying Soundness

Remove all the transitions that are not present in the 

final ARG.

Remove isolated places & all the places that do not 

have tokens in any markings.



61

Repair Time

Faculty of Computer Science Repair ExperimentsACM SIGMOD

Intel Core I7-12700H



62

Prototype

Faculty of Computer Science ImplementationACM SIGMOD



63

Conclusion

Conclusion

Verifying soundness on DPN allows for a subtle investigation of each execution scenario 
helping to detect deadlocks and livelocks that could be hidden in other formalisms.

Our soundness verification technique allows to decrease the number of needed state space 
constructions, which helps to decrease the overall execution time.

The proposed repair algorithm incorporates the verification techniques and, by that, could 
repair a model rather fast. By exploiting coverability graph abstractions, the algorithm allows 
to repair some unbounded models.

Both the algorithms could be used to detect and eliminate errors both in manually 
constructed models and in the models automatically constructed from event logs.

Faculty of Computer Science ACM SIGMOD



64

Papers

Conclusion

Nikolai M. Suvorov, Irina A. Lomazova Verification of data-aware process models: Checking soundness of 
data Petri nets // Journal of Logical and Algebraic Methods in Programming. 2024. Vol. 138. Article 100953.

Suvorov N. M., Lomazova I. A. Soundness Correction of Data Petri Nets // IEEE Access. 2025. Vol. 13. P. 
149142–149157.

Faculty of Computer Science ACM SIGMOD



Thanks for your attention!

Presenter: Nikolai M. Suvorov
nmsuvorov@edu.hse.ru

nmsuvorov@hse.ru

mailto:nmsuvorov@edu.hse.ru
mailto:nmsuvorov@hse.ru

